Many sampling methods are available when it comes to statistical surveys and obtaining the necessary data. Simple sampling, systematic sampling, quota sampling, cluster sampling — various ways to construct…
continue reading
Stratified Random Sampling, PDF
-
Requirements for Stratified Random Sampling
download now -
Basic Stratified Random Sampling
download now -
Stratified Random Sampling from Stored Data
download now -
What is Stratified Random Sampling
download now -
Stratified Random Sampling Study
download now -
Calculating Sample Size for Stratified Random Sample
download now -
Stratified Random Sampling Types
download now -
Stratified Random Sampling Design
download now -
Stratified Random Sampling of Materials
download now -
Stratified Random Sampling Survey
download now -
Stratified Random Sampling PDF
download now -
Sample Stratified Random Sampling
download now -
Scalable Stratified Random Sampling
download now -
Stratified Random Sampling Example
download now -
Stratified Random Sampling Techniques
download now -
Stratified Random Sampling Method
download now -
Printable Stratified Random Sampling
download now -
Stratified Random Sampling for Power Estimation
download now -
Stratified Random Sampling Reason
download now -
Stratified Random Sampling Approach
download now -
Formal Stratified Random Sampling
download now -
Use of Stratified Random Sampling
download now -
Type Estimators In Stratified Random Sampling
download now -
Multimetric Evaluation of Stratified Random Sampling
download now -
Standard Stratified Random Sampling
download now -
Stratified Random Sampling Confidence intervals
download now -
Stratified Random Sampling Project
download now -
Stratified Random Sampling Survey Data
download now -
Estimation in Stratified Random Sampling
download now -
Random Sampling Strategies
download now -
Stratified Random Sampling Result
download now -
Stratified Random Sampling Procedure
download now -
Stratified Random Sampling Reliability
download now -
Characteristics from Stratified Random Sampling
download now -
Stratified Random Sampling in Modern Audit
download now -
Stratified Random Sampling Experimental Design
download now -
Stratified Random Sampling in Research Methodology
download now -
Stratified Random Sampling Errors
download now -
Ratio Estimators in Stratified Random Sampling
download now -
Adaptive Stratified Random Sampling
download now -
Stratified Random Sampling for Billing
download now -
Stratified Random Sampling Terminology
download now -
Uses of Stratified Random Sampling
download now -
Stratified Random Sampling in SAS
download now -
Multistage Stratified Sampling
download now -
Stratified Sampling Sociology
download now -
Stratified Sampling Definition
download now -
Disproportionate Stratified Sampling
download now -
Stratified Random Sampling Formula
download now -
Classification Sampling Methods
download now -
Stratified Random Sampling from a Discrete Population
download now -
Stratified Random Sampling Terminology and Methods
download now -
Stratified Random Sampling Format
download now
What Is a Stratified Random Sampling?
Stratified random sampling is a probability sampling in which the entire population is separated into homogenous groups (strata) for the sampling process. Each stratum is based on shared features or attributes, such as education level, income, and gender. Then, samples are taken randomly from each stratum and compared with one another to conclude. Researchers frequently employ stratified random sampling to examine data from distinct subgroups or strata. It enables them to rapidly collect a sample representative of the total population under study. Stratified sampling is one of four probability sampling approaches, along with simple random, systematic, stratified, and cluster sampling. Your selection of sampling method will rely on your objectives, budget, and required level of precision. With this in mind, establish what you wish to accomplish and experiment with several strategies to see which will work best for your research. Modern technologies have dramatically improved access to information. As a result, this has contributed to the development of significant academic research. A report from the National Science Foundation indicates that the global output of research in science and engineering has increased by 4% each year.
Benefits of Stratified Random Sampling
The sampling procedure divides a population into subpopulations before using random sample procedures. A disadvantage is that researchers need to segment the population into smaller groups. In contrast to simple random sampling, which involves choosing information randomly from the entire population to guarantee that each prospective sample has an equal chance of occurring, stratified sampling is distinct and different. On the other hand, stratified random sampling divides the population into specific groups, or strata, depending on shared characteristics. Here are some benefits and drawbacks of using stratified sampling:
Types of Data Collection Methods
As our culture shifts away from factory work, lifelong education becomes increasingly necessary. Technology and data have become integral to our working methods. This transformation has placed greater expectations than ever before on educators. You must understand how to collect and handle data, whether teaching in a classroom or a boardroom. If you’re still interested, below are several data collection methods.
1. Interviews
If you asked a person with little knowledge of data analysis the best way to acquire information from individuals, the most popular response would likely be interviewed. Anyone may generate a list of questions, but the key to doing productive interviews is understanding what to ask. Person-to-person interviews can be the most expensive primary data collection method. Occasionally, though, an in-person interview might be worthwhile, as the interviewer can design follow-up questions based on the candidate’s responses in real time. Additionally, interviews permit open-ended questioning. Interviews are more adaptable and flexible than primary data collection techniques, such as surveys.
2. Observation
Observation is the practice of gathering data without asking questions. This method is more subjective because the researcher or observer must apply judgment to the collected data. In some instances, however, the risk of prejudice is negligible. Generally speaking, observation may determine the dynamics of a situation, which other data collection methods cannot measure. Observation can also be integrated with supplementary data, such as video.
3. Documents and Records
Occasionally, you can obtain a substantial amount of information without asking anyone. Document- and record-based research utilizes existing data to conduct an investigation. Examples of this type of study include attendance logs, meeting minutes, and financial documents. Using documents and records can be economical because you rely primarily on previously conducted research. However, because the researcher has less control over the results, documents, and papers might be an unreliable sources of information.
4. Focus Groups
A blend of interviewing, surveying, and observation, a focus group is a form of data collection involving numerous persons who share a common characteristic. A focus group is intended to give a collective dimension to individual data collection. Participants in a focus group study may be asked to view a presentation, debate its content, and answer surveys or interview-style questions.
5. Oral Histories
On the surface, oral history may resemble an interview. Both methods of data collection require asking questions. Oral history is more accurately described as the recording, preservation, and interpretation of historical knowledge based on individuals’ opinions and personal experiences during events. Unlike interviews and surveys, oral histories are related to a specific phenomenon. For instance, a researcher may wish to examine the impact of a flood on the town. Oral history can offer light on what transpired precisely. It is a holistic evaluation strategy that employs a range of methodologies.
How to Perform Stratified Random Sampling
As a researcher or statistician, learning to employ stratified random sampling will help you evaluate strata relationships more simply. The sampling is more accurate and representative by obtaining a proportional random sample of a stratified population. For the sake of their research, researchers establish strata based on shared features or attributes, such as gender, race, geography, education level, or socioeconomic status. Each population associate can only be assigned to one subgroup, or stratum, before being randomly sampled using a probability sampling method such as random selection. This allows you to estimate the statistical measures for each subset and ensures that strata are represented proportionally in the sample. Four steps are required to do a stratified random sampling:
1. Specify the Population and Subpopulations.
Define the population from which you intend to draw your sample. Then, divide this population into subgroups with distinct characteristics. You can use various factors, such as race and gender, to define subgroups. Subgroups must be mutually exclusive, include no overlap, and consist of the entire population. Remember that each person can only belong to one subgroup.
2. Divide the People into Smaller Groups.
After identifying the population and subgroups, compile an information sheet about each population member. Assign each individual to a distinct grouping. Ensure that there is no overlap, that each stratum is mutually exclusive, and that each stratum contains the entire population.
3. Choose the Subgroup Sample Size.
The next step is to guarantee that the number of people in each subgroup’s sample is about the same as in the whole population. Subgroups that are less common in the entire population are also less common in the sample. On the other hand, subgroups that are more common in the whole population are also more common in the sample. Choose a total sample size that is big enough to draw statistical conclusions for each stratum.
4. Take Random Samples of the Subgroups
Choose a sampling method based on probability, such as systematic sampling or random selection. Utilize this sampling technique on each subgroup to generate a sample. This represents a random stratified sample of the original population.
FAQs
What is the limitation of stratified sampling?
An essential disadvantage of stratified sampling is that it might be challenging to pick the appropriate strata for a sample. The second disadvantage is that organizing and assessing the data is more challenging than a simple random sample.
Why is stratified better than random?
Both have advantages and downsides. Because it uses specific features to divide the population into subsets, it can provide a more accurate picture of the people.
When should you use stratified sampling?
It would help if you used stratified sampling when you can split your sample into mutually exclusive and exhaustive subgroups that you assume will have different mean values for the variable you are examining.
Moreover, this is stratified random sampling. Hopefully, you now understand how to implement this probability sampling method in your research and survey analysis. Are you prepared to implement your own Stratified Random Sampling? Check out our various templates above!